Properties

Label 15296.54.1.a1.a1
Order $ 2^{6} \cdot 239 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{64}\times C_{239}$
Order: \(15296\)\(\medspace = 2^{6} \cdot 239 \)
Index: $1$
Exponent: \(7648\)\(\medspace = 2^{5} \cdot 239 \)
Generators: $b^{7170}, b^{956}, b^{5736}, b^{32}, b^{239}, a, b^{3824}$ Copy content Toggle raw display
Nilpotency class: $5$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, a direct factor, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $Q_{64}\times C_{239}$
Order: \(15296\)\(\medspace = 2^{6} \cdot 239 \)
Exponent: \(7648\)\(\medspace = 2^{5} \cdot 239 \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{238}\times C_8.(C_8\times D_4)$
$\operatorname{Aut}(H)$ $C_{238}\times C_8.(C_8\times D_4)$
$W$$D_{16}$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_{478}$
Normalizer:$Q_{64}\times C_{239}$
Complements:$C_1$
Maximal under-subgroups:$Q_{32}\times C_{239}$$Q_{32}\times C_{239}$$C_{7648}$$Q_{64}$

Other information

Möbius function$1$
Projective image$D_{16}$