Subgroup ($H$) information
| Description: | $C_{39}$ | 
| Order: | \(39\)\(\medspace = 3 \cdot 13 \) | 
| Index: | \(39\)\(\medspace = 3 \cdot 13 \) | 
| Exponent: | \(39\)\(\medspace = 3 \cdot 13 \) | 
| Generators: | $c^{13}, b$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,13$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_{13}^2:C_3^2$ | 
| Order: | \(1521\)\(\medspace = 3^{2} \cdot 13^{2} \) | 
| Exponent: | \(39\)\(\medspace = 3 \cdot 13 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_{13}:C_3$ | 
| Order: | \(39\)\(\medspace = 3 \cdot 13 \) | 
| Exponent: | \(39\)\(\medspace = 3 \cdot 13 \) | 
| Automorphism Group: | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) | 
| Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\times C_{13}^2.C_{12}.\PSL(2,13).C_2$ | 
| $\operatorname{Aut}(H)$ | $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(79092\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 13^{3} \) | 
| $W$ | $C_3$, of order \(3\) | 
Related subgroups
Other information
| Möbius function | $13$ | 
| Projective image | $C_{13}^2:C_3$ | 
