Properties

Label 1521.11.39.b1.bj1
Order $ 3 \cdot 13 $
Index $ 3 \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}:C_3$
Order: \(39\)\(\medspace = 3 \cdot 13 \)
Index: \(39\)\(\medspace = 3 \cdot 13 \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Generators: $a, bc^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_{13}^2:C_3^2$
Order: \(1521\)\(\medspace = 3^{2} \cdot 13^{2} \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times C_{13}^2.C_{12}.\PSL(2,13).C_2$
$\operatorname{Aut}(H)$ $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
$\operatorname{res}(S)$$F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
$W$$C_{13}:C_3$, of order \(39\)\(\medspace = 3 \cdot 13 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{39}:C_3$
Normal closure:$C_{13}^2:C_3$
Core:$C_{13}$
Minimal over-subgroups:$C_{13}^2:C_3$$C_{39}:C_3$
Maximal under-subgroups:$C_{13}$$C_3$
Autjugate subgroups:1521.11.39.b1.a11521.11.39.b1.b11521.11.39.b1.c11521.11.39.b1.d11521.11.39.b1.e11521.11.39.b1.f11521.11.39.b1.g11521.11.39.b1.h11521.11.39.b1.i11521.11.39.b1.j11521.11.39.b1.k11521.11.39.b1.l11521.11.39.b1.m11521.11.39.b1.n11521.11.39.b1.o11521.11.39.b1.p11521.11.39.b1.q11521.11.39.b1.r11521.11.39.b1.s11521.11.39.b1.t11521.11.39.b1.u11521.11.39.b1.v11521.11.39.b1.w11521.11.39.b1.x11521.11.39.b1.y11521.11.39.b1.z11521.11.39.b1.ba11521.11.39.b1.bb11521.11.39.b1.bc11521.11.39.b1.bd11521.11.39.b1.be11521.11.39.b1.bf11521.11.39.b1.bg11521.11.39.b1.bh11521.11.39.b1.bi11521.11.39.b1.bk11521.11.39.b1.bl11521.11.39.b1.bm11521.11.39.b1.bn11521.11.39.b1.bo11521.11.39.b1.bp1

Other information

Number of subgroups in this conjugacy class$13$
Möbius function$1$
Projective image$C_{13}^2:C_3^2$