Properties

Label 1521.11.13.a1.b1
Order $ 3^{2} \cdot 13 $
Index $ 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{39}:C_3$
Order: \(117\)\(\medspace = 3^{2} \cdot 13 \)
Index: \(13\)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Generators: $a, bc^{27}, c^{13}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Ambient group ($G$) information

Description: $C_{13}^2:C_3^2$
Order: \(1521\)\(\medspace = 3^{2} \cdot 13^{2} \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times C_{13}^2.C_{12}.\PSL(2,13).C_2$
$\operatorname{Aut}(H)$ $S_3\times F_{13}$, of order \(936\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 13 \)
$\operatorname{res}(S)$$S_3\times F_{13}$, of order \(936\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
$W$$C_{13}:C_3$, of order \(39\)\(\medspace = 3 \cdot 13 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{39}:C_3$
Normal closure:$C_{13}^2:C_3^2$
Core:$C_{39}$
Minimal over-subgroups:$C_{13}^2:C_3^2$
Maximal under-subgroups:$C_{39}$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_3^2$
Autjugate subgroups:1521.11.13.a1.a11521.11.13.a1.c11521.11.13.a1.d11521.11.13.a1.e11521.11.13.a1.f11521.11.13.a1.g11521.11.13.a1.h11521.11.13.a1.i11521.11.13.a1.j11521.11.13.a1.k11521.11.13.a1.l11521.11.13.a1.m11521.11.13.a1.n1

Other information

Number of subgroups in this conjugacy class$13$
Möbius function$-1$
Projective image$C_{13}^2:C_3$