Properties

Label 1512.843.3.b1
Order $ 2^{3} \cdot 3^{2} \cdot 7 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_7$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Index: \(3\)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a, d^{6}, c^{2}, d^{14}, d^{21}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^2:D_{21}$
Order: \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times S_4\times \GL(2,3)$
$\operatorname{Aut}(H)$ $C_2^2\times \GL(2,3)\times F_7$
$\card{\operatorname{res}(S)}$\(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6^2:D_7$
Normal closure:$C_6^2:D_{21}$
Core:$C_6\times C_{42}$
Minimal over-subgroups:$C_6^2:D_{21}$
Maximal under-subgroups:$C_6\times C_{42}$$C_3^2\times D_{14}$$C_{21}:C_{12}$$C_{21}:D_4$$D_4\times C_3^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_7:S_4$