Subgroup ($H$) information
| Description: | $C_6^2:D_7$ |
| Order: | \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
| Index: | \(3\) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Generators: |
$a, d^{6}, c^{2}, d^{14}, d^{21}, c^{3}$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_6^2:D_{21}$ |
| Order: | \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_7\times S_4\times \GL(2,3)$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times \GL(2,3)\times F_7$ |
| $\card{\operatorname{res}(S)}$ | \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $C_7:S_4$ |