Subgroup ($H$) information
| Description: | $D_{14}:C_6$ | 
| Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| Index: | \(9\)\(\medspace = 3^{2} \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Generators: | 
		
    $a^{3}, a^{2}, d, c^{3}, b^{3}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_{21}:(C_3\times S_4)$ | 
| Order: | \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_7\times C_3:S_3:S_4$ | 
| $\operatorname{Aut}(H)$ | $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| $\operatorname{res}(S)$ | $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $W$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $9$ | 
| Möbius function | $3$ | 
| Projective image | $C_{21}:(C_3\times S_4)$ |