Properties

Label 1512.780.378.a1.a1
Order $ 2^{2} $
Index $ 2 \cdot 3^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(378\)\(\medspace = 2 \cdot 3^{3} \cdot 7 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{ll}\alpha^{23} & \alpha^{50} \\ \alpha^{35} & \alpha^{23} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{44} & \alpha^{5} \\ \alpha^{53} & \alpha^{44} \\ \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_3\times \SL(2,8)$
Order: \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8):C_6$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_3$, of order \(3\)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_2^2\times C_6$
Normal closure:$\SL(2,8)$
Core:$C_1$
Minimal over-subgroups:$C_2\times C_6$$C_2^3$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this conjugacy class$63$
Möbius function$0$
Projective image$C_3\times \SL(2,8)$