Subgroup ($H$) information
| Description: | $C_9$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Generators: |
$\left(\begin{array}{ll}\alpha^{57} & \alpha^{25} \\ \alpha^{53} & \alpha^{30} \\ \end{array}\right), \left(\begin{array}{ll}0 & \alpha^{49} \\ \alpha^{14} & 1 \\ \end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
| Description: | $C_3\times \SL(2,8)$ |
| Order: | \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \) |
| Exponent: | \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \) |
| Derived length: | $1$ |
The ambient group is nonabelian, an A-group, and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\SL(2,8):C_6$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_3\times C_9$ |
| Normalizer: | $C_3\times C_9$ |
| Normal closure: | $C_3\times \SL(2,8)$ |
| Core: | $C_1$ |
| Minimal over-subgroups: | $C_3\times C_9$ |
| Maximal under-subgroups: | $C_3$ |
Other information
| Number of subgroups in this conjugacy class | $56$ |
| Möbius function | $0$ |
| Projective image | $C_3\times \SL(2,8)$ |