Properties

Label 15116544.df.8.L
Order $ 2^{5} \cdot 3^{10} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^9.C_2^4.S_3$
Order: \(1889568\)\(\medspace = 2^{5} \cdot 3^{10} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,12,10,7,5,18)(2,17,9,6,8,11)(13,15)(14,16)(19,24)(20,23), (4,14,16)(5,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^9.C_2^6.D_6$
Order: \(15116544\)\(\medspace = 2^{8} \cdot 3^{10} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3:S_3)^3.D_6\wr S_3$, of order \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
$\operatorname{Aut}(H)$ $C_3^6.D_6\wr S_3.D_6$, of order \(90699264\)\(\medspace = 2^{9} \cdot 3^{11} \)
$W$$C_3^9.C_2^4.D_6$, of order \(3779136\)\(\medspace = 2^{6} \cdot 3^{10} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^9.C_2^4.D_6$
Normal closure:$C_3^9.C_2^6.S_3$
Core:$C_3^9.C_2^4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^9.C_2^6.D_6$