Properties

Label 15116544.df
Order \( 2^{8} \cdot 3^{10} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{10} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $27$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,2,3,5,9,15)(4,7,11,14,12,17,16,18,6)(8,13,10)(19,20,22,24,26,27)(21,23,25), (2,4,8,14,9,16)(3,6)(5,10)(7,12)(11,15)(13,17)(19,21,24)(20,22)(23,25,26,27) >;
 
Copy content gap:G := Group( (1,2,3,5,9,15)(4,7,11,14,12,17,16,18,6)(8,13,10)(19,20,22,24,26,27)(21,23,25), (2,4,8,14,9,16)(3,6)(5,10)(7,12)(11,15)(13,17)(19,21,24)(20,22)(23,25,26,27) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,5,9,15)(4,7,11,14,12,17,16,18,6)(8,13,10)(19,20,22,24,26,27)(21,23,25)', '(2,4,8,14,9,16)(3,6)(5,10)(7,12)(11,15)(13,17)(19,21,24)(20,22)(23,25,26,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(15135131072405986671707830573336230793126266401183150907473860074125713368752580621135124844593761246227142602994000846230088911206873541020993118316308385201296221237977139032113371766782444485215311483574413427571668978252513502070290776465423041191885873454462231760330689024099701277762036531438853764504170903068534528746245903462323465686723636806105038019755324181319752408287186359292178128202534180612044521013487280448588332141931661876138806546282422769799373952282754381642992101156634838770135685124322827196411788549386059229500142284292612406438447457397357908976489618880279677019143918610280184461577090401386932544006615888284915545691368581845612655419023428333404087945747759202170769259545253932232682972505856289313328109051400970601010527,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 

Group information

Description:$C_3^9.C_2^6.D_6$
Order: \(15116544\)\(\medspace = 2^{8} \cdot 3^{10} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$(C_3:S_3)^3.D_6\wr S_3$, of order \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 10
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 45279 112994 769824 3294270 2426112 6788448 1679616 15116544
Conjugacy classes   1 14 89 13 319 14 97 2 549
Divisions 1 14 82 13 295 14 71 2 492
Autjugacy classes 1 14 78 13 291 7 67 1 472

Minimal presentations

Permutation degree:$27$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid c^{2}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 181293120, 448625881, 91, 736583978, 8687126, 170320323, 123547701, 14295, 238283644, 154454062, 41006830, 958, 256, 490447877, 1119767, 92378921, 923, 1188438, 36450564, 53831022, 7620, 3858, 366, 1492999, 326965273, 121678891, 6973, 3535, 1711377080, 1102258718, 12104360, 58382, 4976, 476, 906992649, 453496347, 16796205, 51903, 4437, 96273154, 349550020, 4639780, 427744, 213922, 35758, 6094, 586, 62219, 194835485, 31151, 373313, 186707, 31223, 5339, 104693484, 211397502, 134202792, 35987394, 17993748, 5509416, 918372, 83028, 696, 36723469, 431149855, 286765969, 73592131, 36796117, 3048313, 508189, 169537, 233312, 340122290, 4199126, 116798, 19634, 3470, 519588879, 243399201, 326972211, 95551557, 13437015, 62403, 1034446480, 523495042, 815236, 43359046, 21679576, 7138492, 1189888, 1119761, 60466211, 279989, 272097863, 136048985, 22674941, 3779297, 630053, 105209]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(15135131072405986671707830573336230793126266401183150907473860074125713368752580621135124844593761246227142602994000846230088911206873541020993118316308385201296221237977139032113371766782444485215311483574413427571668978252513502070290776465423041191885873454462231760330689024099701277762036531438853764504170903068534528746245903462323465686723636806105038019755324181319752408287186359292178128202534180612044521013487280448588332141931661876138806546282422769799373952282754381642992101156634838770135685124322827196411788549386059229500142284292612406438447457397357908976489618880279677019143918610280184461577090401386932544006615888284915545691368581845612655419023428333404087945747759202170769259545253932232682972505856289313328109051400970601010527,15116544); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(15135131072405986671707830573336230793126266401183150907473860074125713368752580621135124844593761246227142602994000846230088911206873541020993118316308385201296221237977139032113371766782444485215311483574413427571668978252513502070290776465423041191885873454462231760330689024099701277762036531438853764504170903068534528746245903462323465686723636806105038019755324181319752408287186359292178128202534180612044521013487280448588332141931661876138806546282422769799373952282754381642992101156634838770135685124322827196411788549386059229500142284292612406438447457397357908976489618880279677019143918610280184461577090401386932544006615888284915545691368581845612655419023428333404087945747759202170769259545253932232682972505856289313328109051400970601010527,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(15135131072405986671707830573336230793126266401183150907473860074125713368752580621135124844593761246227142602994000846230088911206873541020993118316308385201296221237977139032113371766782444485215311483574413427571668978252513502070290776465423041191885873454462231760330689024099701277762036531438853764504170903068534528746245903462323465686723636806105038019755324181319752408287186359292178128202534180612044521013487280448588332141931661876138806546282422769799373952282754381642992101156634838770135685124322827196411788549386059229500142284292612406438447457397357908976489618880279677019143918610280184461577090401386932544006615888284915545691368581845612655419023428333404087945747759202170769259545253932232682972505856289313328109051400970601010527,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 
Permutation group:Degree $27$ $\langle(1,2,3,5,9,15)(4,7,11,14,12,17,16,18,6)(8,13,10)(19,20,22,24,26,27)(21,23,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,2,3,5,9,15)(4,7,11,14,12,17,16,18,6)(8,13,10)(19,20,22,24,26,27)(21,23,25), (2,4,8,14,9,16)(3,6)(5,10)(7,12)(11,15)(13,17)(19,21,24)(20,22)(23,25,26,27) >;
 
Copy content gap:G := Group( (1,2,3,5,9,15)(4,7,11,14,12,17,16,18,6)(8,13,10)(19,20,22,24,26,27)(21,23,25), (2,4,8,14,9,16)(3,6)(5,10)(7,12)(11,15)(13,17)(19,21,24)(20,22)(23,25,26,27) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,5,9,15)(4,7,11,14,12,17,16,18,6)(8,13,10)(19,20,22,24,26,27)(21,23,25)', '(2,4,8,14,9,16)(3,6)(5,10)(7,12)(11,15)(13,17)(19,21,24)(20,22)(23,25,26,27)'])
 
Transitive group: 36T63867 36T63870 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^9.C_2^5)$ . $S_4$ (3) $C_3^9$ . $(C_2^5:S_4)$ $(C_3^9.C_2^6)$ . $D_6$ $(C_3^9.C_2^6.S_3)$ . $C_2$ all 17

Elements of the group are displayed as permutations of degree 27.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 24 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^9.C_2^6.D_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^9.C_2^6.C_3$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^9.C_2^6.D_6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^9$ $G/\operatorname{Fit} \simeq$ $C_2^5:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^9.C_2^6.D_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^9$ $G/\operatorname{soc} \simeq$ $C_2^5:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^9.C_3$

Subgroup diagram and profile

Series

Derived series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.C_3$ $\rhd$ $C_3^9.C_2^6$ $\rhd$ $C_3^9$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.C_6$ $\rhd$ $C_3^9.C_2^6.C_3$ $\rhd$ $C_3^9.C_2^6$ $\rhd$ $C_3^9.C_2^4$ $\rhd$ $C_3^9.C_2^2$ $\rhd$ $C_3^9$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $549 \times 549$ character table is not available for this group.

Rational character table

The $492 \times 492$ rational character table is not available for this group.