Properties

Label 15116544.db.2.A
Order $ 2^{7} \cdot 3^{10} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^9.C_2^6.C_6$
Order: \(7558272\)\(\medspace = 2^{7} \cdot 3^{10} \)
Index: \(2\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(5,18,13)(8,17,9)(19,21,25), (1,14,6)(5,13,18)(8,9,17)(22,27,23), (1,2,4,3,5,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^9.C_2^6.D_6$
Order: \(15116544\)\(\medspace = 2^{8} \cdot 3^{10} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3:S_3)^3.D_6\wr S_3$, of order \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
$\operatorname{Aut}(H)$ Group of order \(181398528\)\(\medspace = 2^{10} \cdot 3^{11} \)
$W$$C_3^9.C_2^6.D_6$, of order \(15116544\)\(\medspace = 2^{8} \cdot 3^{10} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^9.C_2^6.D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^9.C_2^6.D_6$