Properties

Label 15116544.db
Order \( 2^{8} \cdot 3^{10} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{10} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $27$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,2,4,3,5,8)(6,7,11,10,13,17)(9,14,16,12,15,18)(19,20,22,25,26,27)(21,24,23), (1,3,6,10,14,15)(2,4,7,12,16,11)(5,9)(8,13)(17,18)(19,21,25)(20,23,26,27)(22,24) >;
 
Copy content gap:G := Group( (1,2,4,3,5,8)(6,7,11,10,13,17)(9,14,16,12,15,18)(19,20,22,25,26,27)(21,24,23), (1,3,6,10,14,15)(2,4,7,12,16,11)(5,9)(8,13)(17,18)(19,21,25)(20,23,26,27)(22,24) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,3,5,8)(6,7,11,10,13,17)(9,14,16,12,15,18)(19,20,22,25,26,27)(21,24,23)', '(1,3,6,10,14,15)(2,4,7,12,16,11)(5,9)(8,13)(17,18)(19,21,25)(20,23,26,27)(22,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2228431507353719366296999714755342684798105299057818721688336686003080815149486868152484728667301253963894017014458465171830711058670296344108474369572507843182090930895763369440029641717954021597709037565385903568061568755213073872762372151883743545254043890415855252272522696212641793457500285899511700882326299350257954563855439629707925063982116558982685083474061180315664272379609009738747108617798303189879355463466788345744721800657196460863993350613230710086427776532059244578286574984976922738615416376206888453774308447079080659980141091586193329402780665082753302605282489778987996932234771619403426720281520512249425793587776994004466488090188767270993434218992280955042409221673493868610857546837489288690758235464546089665043287306652426929828057647531747304647519238097667095420301407362441141631557866847,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 

Group information

Description:$C_3^9.C_2^6.D_6$
Order: \(15116544\)\(\medspace = 2^{8} \cdot 3^{10} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$(C_3:S_3)^3.D_6\wr S_3$, of order \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 10
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 37503 112994 653184 3302046 2426112 6905088 1679616 15116544
Conjugacy classes   1 14 89 13 314 14 117 2 564
Divisions 1 14 78 13 285 11 74 2 478
Autjugacy classes 1 14 78 13 285 7 74 1 473

Minimal presentations

Permutation degree:$27$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid b^{6}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 219617136, 208349641, 91, 719037434, 693715971, 188525253, 165001359, 34836537, 865441804, 471444322, 193719640, 43468798, 256, 1250007557, 584693015, 653225, 187547, 369761118, 945845988, 58845192, 62931012, 58844850, 54906, 366, 492687367, 129890329, 121305643, 6973, 3535, 2329178336, 1164010850, 219739112, 7616654, 8823896, 35274950, 4976, 476, 1884902409, 925659387, 26129565, 51903, 2812401, 4437, 2277053866, 564032728, 4704526, 169446880, 41613346, 43131628, 292366, 86878, 22150, 586, 40310795, 564351005, 20342063, 31223, 2318349396, 1115426082, 272162640, 179128002, 33156948, 9182280, 1561404, 29658, 10020, 696, 475663117, 872690143, 137404561, 37013827, 18506965, 127129, 42493, 2799374, 706851392, 781021490, 8398148, 4199126, 699962, 19634, 3470, 1562194959, 30108705, 739031091, 264259653, 76142679, 12690555, 373407, 611907, 58983, 577414672, 799541314, 166826356, 86189254, 43094680, 3591340, 1197232, 128770577, 1666746755, 483729461, 272097863, 73063385, 12177341, 3849281, 630053, 56609]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(2228431507353719366296999714755342684798105299057818721688336686003080815149486868152484728667301253963894017014458465171830711058670296344108474369572507843182090930895763369440029641717954021597709037565385903568061568755213073872762372151883743545254043890415855252272522696212641793457500285899511700882326299350257954563855439629707925063982116558982685083474061180315664272379609009738747108617798303189879355463466788345744721800657196460863993350613230710086427776532059244578286574984976922738615416376206888453774308447079080659980141091586193329402780665082753302605282489778987996932234771619403426720281520512249425793587776994004466488090188767270993434218992280955042409221673493868610857546837489288690758235464546089665043287306652426929828057647531747304647519238097667095420301407362441141631557866847,15116544); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2228431507353719366296999714755342684798105299057818721688336686003080815149486868152484728667301253963894017014458465171830711058670296344108474369572507843182090930895763369440029641717954021597709037565385903568061568755213073872762372151883743545254043890415855252272522696212641793457500285899511700882326299350257954563855439629707925063982116558982685083474061180315664272379609009738747108617798303189879355463466788345744721800657196460863993350613230710086427776532059244578286574984976922738615416376206888453774308447079080659980141091586193329402780665082753302605282489778987996932234771619403426720281520512249425793587776994004466488090188767270993434218992280955042409221673493868610857546837489288690758235464546089665043287306652426929828057647531747304647519238097667095420301407362441141631557866847,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2228431507353719366296999714755342684798105299057818721688336686003080815149486868152484728667301253963894017014458465171830711058670296344108474369572507843182090930895763369440029641717954021597709037565385903568061568755213073872762372151883743545254043890415855252272522696212641793457500285899511700882326299350257954563855439629707925063982116558982685083474061180315664272379609009738747108617798303189879355463466788345744721800657196460863993350613230710086427776532059244578286574984976922738615416376206888453774308447079080659980141091586193329402780665082753302605282489778987996932234771619403426720281520512249425793587776994004466488090188767270993434218992280955042409221673493868610857546837489288690758235464546089665043287306652426929828057647531747304647519238097667095420301407362441141631557866847,15116544)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18;
 
Permutation group:Degree $27$ $\langle(1,2,4,3,5,8)(6,7,11,10,13,17)(9,14,16,12,15,18)(19,20,22,25,26,27)(21,24,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,2,4,3,5,8)(6,7,11,10,13,17)(9,14,16,12,15,18)(19,20,22,25,26,27)(21,24,23), (1,3,6,10,14,15)(2,4,7,12,16,11)(5,9)(8,13)(17,18)(19,21,25)(20,23,26,27)(22,24) >;
 
Copy content gap:G := Group( (1,2,4,3,5,8)(6,7,11,10,13,17)(9,14,16,12,15,18)(19,20,22,25,26,27)(21,24,23), (1,3,6,10,14,15)(2,4,7,12,16,11)(5,9)(8,13)(17,18)(19,21,25)(20,23,26,27)(22,24) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,3,5,8)(6,7,11,10,13,17)(9,14,16,12,15,18)(19,20,22,25,26,27)(21,24,23)', '(1,3,6,10,14,15)(2,4,7,12,16,11)(5,9)(8,13)(17,18)(19,21,25)(20,23,26,27)(22,24)'])
 
Transitive group: 36T63863 36T63874 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^9.C_2^5)$ . $S_4$ (3) $C_3^9$ . $(C_2^5:S_4)$ $(C_3^9.C_2^6)$ . $D_6$ $(C_3^9.C_2^6.S_3)$ . $C_2$ all 17

Elements of the group are displayed as permutations of degree 27.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 24 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^9.C_2^6.D_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^9.C_2^6.C_3$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^9.C_2^6.D_6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^9$ $G/\operatorname{Fit} \simeq$ $C_2^5:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^9.C_2^6.D_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^9$ $G/\operatorname{soc} \simeq$ $C_2^5:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^9.C_3$

Subgroup diagram and profile

Series

Derived series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.C_3$ $\rhd$ $C_3^9.C_2^6$ $\rhd$ $C_3^9$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.S_3$ $\rhd$ $C_3^9.C_2^6.C_3$ $\rhd$ $C_3^9.C_2^6$ $\rhd$ $C_3^9.C_2^4$ $\rhd$ $C_3^9.C_2^2$ $\rhd$ $C_3^9$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^9.C_2^6.D_6$ $\rhd$ $C_3^9.C_2^6.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $564 \times 564$ character table is not available for this group.

Rational character table

The $478 \times 478$ rational character table is not available for this group.