Properties

Label 1480.20.4.b1.b1
Order $ 2 \cdot 5 \cdot 37 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{37}$
Order: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Generators: $a, b^{444}, b^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_5\times D_{148}$
Order: \(1480\)\(\medspace = 2^{3} \cdot 5 \cdot 37 \)
Exponent: \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{74}.C_{18}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$\operatorname{res}(S)$$C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{37}$, of order \(74\)\(\medspace = 2 \cdot 37 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times D_{74}$
Normal closure:$C_5\times D_{74}$
Core:$C_{185}$
Minimal over-subgroups:$C_5\times D_{74}$
Maximal under-subgroups:$C_{185}$$D_{37}$$C_{10}$
Autjugate subgroups:1480.20.4.b1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{148}$