Properties

Label 1464100.g.275._.A
Order $ 2^{2} \cdot 11^{3} $
Index $ 5^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:D_{22}$
Order: \(5324\)\(\medspace = 2^{2} \cdot 11^{3} \)
Index: \(275\)\(\medspace = 5^{2} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 1 & 5 & 0 \\ 0 & 0 & 1 & 0 \\ 7 & 0 & 8 & 1 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 10 & 10 & 2 & 0 \\ 0 & 0 & 10 & 0 \\ 5 & 0 & 1 & 10 \end{array}\right), \left(\begin{array}{rrrr} 8 & 6 & 8 & 10 \\ 10 & 8 & 2 & 8 \\ 9 & 3 & 5 & 5 \\ 5 & 9 & 1 & 5 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 10 & 0 \\ 0 & 1 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 7 & 4 & 8 \\ 2 & 10 & 7 & 4 \\ 10 & 9 & 3 & 4 \\ 1 & 10 & 9 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $\He_{11}.(C_{10}\times F_{11})$
Order: \(1464100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_{55}:C_5$
Order: \(275\)\(\medspace = 5^{2} \cdot 11 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Automorphism Group: $F_5\times F_{11}$, of order \(2200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11 \)
Outer Automorphisms: $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{11}^2.F_{11}^2$, of order \(2928200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{4} \)
$\operatorname{Aut}(H)$ $C_2\times C_{11}^3.C_{10}.\PSL(3,11)$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed