Properties

Label 146410.v.110.a1
Order $ 11^{3} $
Index $ 2 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3$
Order: \(1331\)\(\medspace = 11^{3} \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(11\)
Generators: $b, d, cd^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_{11}^3:C_{110}$
Order: \(146410\)\(\medspace = 2 \cdot 5 \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{110}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{11}^2.C_{10}^2$
$\operatorname{Aut}(H)$ $\GL(3,11)$, of order \(2124276000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \cdot 7 \cdot 11^{3} \cdot 19 \)
$W$$C_{110}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{11}^3$
Normalizer:$C_{11}^3:C_{110}$
Complements:$C_{110}$
Minimal over-subgroups:$C_{11}^3:C_{11}$$C_{11}^3:C_5$$C_{11}^3:C_2$
Maximal under-subgroups:$C_{11}^2$$C_{11}^2$$C_{11}^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{11}^3:C_{110}$