Properties

Label 1458.490.3.d1
Order $ 2 \cdot 3^{5} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_3^4$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(3\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $d^{3}, e^{3}, ce^{3}, a, be^{2}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_3^4:C_3^2$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3:S_3.(C_3\times S_3\times S_4)$
$\operatorname{Aut}(H)$ $C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(209952\)\(\medspace = 2^{5} \cdot 3^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^2\times \He_3$, of order \(243\)\(\medspace = 3^{5} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times C_3^4:C_3^2$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_2\times C_3^4:C_3^2$
Maximal under-subgroups:$C_3^3:C_3^2$$C_6\times \He_3$$C_6\times \He_3$$C_6\times \He_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3^2\times \He_3$