Properties

Label 1458.311.9.t1
Order $ 2 \cdot 3^{4} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.\He_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{3}, e^{3}, a^{2}e, d, bc^{2}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_3^3.C_3^3$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^5.C_2^2$
$\operatorname{Aut}(H)$ $C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3\times \He_3$, of order \(81\)\(\medspace = 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$(C_3\times C_{18}):C_3^2$
Normal closure:$(C_3\times C_{18}):C_3^2$
Core:$C_2\times \He_3$
Minimal over-subgroups:$(C_3\times C_{18}):C_3^2$
Maximal under-subgroups:$C_3.\He_3$$C_2\times \He_3$$C_9:C_6$$C_3\times C_{18}$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_3^4:C_3$