Properties

Label 1458.311.243.a1
Order $ 2 \cdot 3 $
Index $ 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(243\)\(\medspace = 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}, e^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the socle, and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_2\times C_3^3.C_3^3$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3^4:C_3$
Order: \(243\)\(\medspace = 3^{5} \)
Exponent: \(3\)
Automorphism Group: $C_3^5.(S_3\times C_3^2:\GL(2,3))$, of order \(629856\)\(\medspace = 2^{5} \cdot 3^{9} \)
Outer Automorphisms: $C_3^5:(C_2\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^5.C_2^2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(13122\)\(\medspace = 2 \cdot 3^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_3^3.C_3^3$
Normalizer:$C_2\times C_3^3.C_3^3$
Minimal over-subgroups:$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_{18}$$C_{18}$$C_{18}$$C_{18}$$C_{18}$$C_{18}$$C_{18}$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^4:C_3$