Subgroup ($H$) information
Description: | $C_3^4.C_6$ |
Order: | \(486\)\(\medspace = 2 \cdot 3^{5} \) |
Index: | \(3\) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Generators: |
$e^{9}, e^{6}, de^{12}, b, e^{2}, c$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $(C_3\times C_{18}):\He_3$ |
Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_3$ |
Order: | \(3\) |
Exponent: | \(3\) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^5.C_3^2.D_6$ |
$\operatorname{Aut}(H)$ | $C_3^3.C_3^5:D_6$, of order \(78732\)\(\medspace = 2^{2} \cdot 3^{9} \) |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
$W$ | $C_3\times \He_3$, of order \(81\)\(\medspace = 3^{4} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_3^4:C_3$ |