Subgroup ($H$) information
Description: | $C_3^4.C_3$ |
Order: | \(243\)\(\medspace = 3^{5} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(9\)\(\medspace = 3^{2} \) |
Generators: |
$ac^{4}, bc^{6}, d$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_3^5:C_6$ |
Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \) |
$\operatorname{Aut}(H)$ | $C_3^3.C_3^5:D_6$, of order \(78732\)\(\medspace = 2^{2} \cdot 3^{9} \) |
$\operatorname{res}(S)$ | $C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
$W$ | $S_3\times \He_3$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \) |
Related subgroups
Centralizer: | $C_3^2$ | ||||
Normalizer: | $C_3^5:C_6$ | ||||
Complements: | $C_6$ $C_6$ | ||||
Minimal over-subgroups: | $C_3^5:C_3$ | $C_3^4.C_6$ | |||
Maximal under-subgroups: | $C_3^4$ | $C_9:C_3^2$ | $C_9:C_3^2$ | $C_3^2:C_9$ | $C_3^2:C_9$ |
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $1$ |
Projective image | $C_3^4:C_6$ |