Properties

Label 1458.1107.6.d1
Order $ 3^{5} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4.C_3$
Order: \(243\)\(\medspace = 3^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $ac^{4}, bc^{6}, d$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^5:C_6$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_3^3.C_3^5:D_6$, of order \(78732\)\(\medspace = 2^{2} \cdot 3^{9} \)
$\operatorname{res}(S)$$C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$S_3\times \He_3$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^5:C_6$
Complements:$C_6$ $C_6$
Minimal over-subgroups:$C_3^5:C_3$$C_3^4.C_6$
Maximal under-subgroups:$C_3^4$$C_9:C_3^2$$C_9:C_3^2$$C_3^2:C_9$$C_3^2:C_9$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$C_3^4:C_6$