Properties

Label 1458.1107.54.a1
Order $ 3^{3} $
Index $ 2 \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(3\)
Generators: $bc^{6}, c^{6}, e$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^5:C_6$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $S_3\times C_3^2$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(729\)\(\medspace = 3^{6} \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3^5$
Normalizer:$C_3^5:C_6$
Minimal over-subgroups:$C_3^4$$C_3^4$$C_3\times \He_3$$C_9:C_3^2$$C_3^4$$C_3\times \He_3$$C_9:C_3^2$$S_3\times C_3^2$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$9$
Projective image$C_3^4:C_6$