Properties

Label 145200.l.100.b1
Order $ 2^{2} \cdot 3 \cdot 11^{2} $
Index $ 2^{2} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{11}^2:C_6$
Order: \(1452\)\(\medspace = 2^{2} \cdot 3 \cdot 11^{2} \)
Index: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $b^{15}, b^{20}c^{4}d^{36}, cd^{20}, d^{22}, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{220}:F_{11}:S_3$
Order: \(145200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_{10}^2$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $S_3\times \GL(2,5)$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Outer Automorphisms: $S_3\times \GL(2,5)$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{30}.C_{10}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{60}.C_2^3$
$W$$C_{11}^2:(S_3\times C_{10})$, of order \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{220}:F_{11}:S_3$
Minimal over-subgroups:$C_2\times C_{11}^2:C_{30}$$C_2\times C_{11}^2:C_{30}$$C_2\times C_{11}^2:D_6$$C_4\times C_{11}^2:C_6$
Maximal under-subgroups:$C_{11}^2:C_6$$C_{11}^2:C_6$$C_{11}:D_{22}$$C_2\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$10$
Projective image$C_{11}^2:(S_3\times C_{10}^2)$