Properties

Label 145200.l.50.a1
Order $ 2^{3} \cdot 3 \cdot 11^{2} $
Index $ 2 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{11}^2:D_6$
Order: \(2904\)\(\medspace = 2^{3} \cdot 3 \cdot 11^{2} \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $a^{5}, d^{4}, d^{22}, b^{20}c^{4}d^{36}, b^{15}, cd^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{220}:F_{11}:S_3$
Order: \(145200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_5\times C_{10}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Outer Automorphisms: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{30}.C_{10}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_{11}^2.C_6.C_{10}.C_2^3$
$W$$C_{11}^2:(C_{10}\times D_6)$, of order \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{220}:F_{11}:S_3$
Complements:$C_5\times C_{10}$
Minimal over-subgroups:$C_{10}\times C_{11}^2:D_6$$C_{11}^2:(C_{10}\times D_6)$$(C_{11}\times C_{44}):D_6$
Maximal under-subgroups:$C_{11}^2:D_6$$C_2\times C_{11}^2:C_6$$C_{11}^2:D_6$$D_{11}\times D_{22}$$C_2\times D_6$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-5$
Projective image$C_{11}^2:(S_3\times C_{10}^2)$