Properties

Label 14520.ba.66.a1.a1
Order $ 2^{2} \cdot 5 \cdot 11 $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{110}$
Order: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 120 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 45 & 0 \\ 0 & 78 \end{array}\right), \left(\begin{array}{rr} 120 & 0 \\ 0 & 120 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_5\times C_{11}^2:D_{12}$
Order: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_6.C_{10}.C_4.C_2^3$
$\operatorname{Aut}(H)$ $D_6\times C_{20}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{110}$
Normalizer:$C_{55}:D_4$
Normal closure:$C_{10}\times C_{11}^2:S_3$
Core:$C_{10}$
Minimal over-subgroups:$D_{11}\times C_{110}$$C_{55}:D_4$
Maximal under-subgroups:$C_{110}$$C_{110}$$C_2\times C_{22}$$C_2\times C_{10}$
Autjugate subgroups:14520.ba.66.a1.b1

Other information

Number of subgroups in this conjugacy class$33$
Möbius function$0$
Projective image$C_{11}^2:D_6$