Properties

Label 14400.bm.8.m1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:(S_3\times F_5)$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ad^{30}, d^{12}e^{4}, c^{2}d^{12}e^{3}, b^{2}, b^{3}d^{30}, e, d^{40}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $F_5^2:S_3^2$
Order: \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_2^2.C_2^4.C_2^2$
$\operatorname{Aut}(H)$ $C_{15}^2.C_2^2.C_2^3.C_2^3$
$W$$D_5^2.(S_3\times D_6)$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_5^2.(S_3\times D_6)$
Normal closure:$C_{15}^2:(C_2\times Q_8)$
Core:$C_{15}^2:C_2^2$
Minimal over-subgroups:$C_{15}^2:(C_2\times Q_8)$$D_5^2:S_3^2$$D_{15}^2:C_4$
Maximal under-subgroups:$C_{15}^2:C_2^2$$C_{15}^2:C_4$$C_{15}^2:C_4$$S_3\times C_5:F_5$$S_3\times C_5:F_5$$D_5.S_3^2$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$F_5^2:S_3^2$