Properties

Label 14400.bm.16.a1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_2^2$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ab^{3}d^{24}e^{2}, e, b^{2}, d^{40}, c^{2}d^{12}e^{3}, d^{12}e$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $F_5^2:S_3^2$
Order: \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_2^2.C_2^4.C_2^2$
$\operatorname{Aut}(H)$ $\AGL(2,3)\times C_5^2:C_4.S_5$
$W$$F_5^2:S_3^2$, of order \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_5^2:S_3^2$
Minimal over-subgroups:$C_{15}^2:C_2^3$$C_{15}:(S_3\times F_5)$$C_{15}:(S_3\times F_5)$$D_{15}^2:C_2$$C_{15}:(S_3\times F_5)$
Maximal under-subgroups:$C_{15}^2:C_2$$C_{15}^2:C_2$$C_{15}:D_{15}$$C_{15}:D_{10}$$C_{15}:D_{10}$$C_{15}:D_{10}$$C_{15}:D_6$$C_{15}:D_6$

Other information

Möbius function$0$
Projective image$F_5^2:S_3^2$