Subgroup ($H$) information
| Description: | $\GL(2,4)$ | 
| Order: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Index: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) | 
| Generators: | $\langle(1,3,5)(6,7,9), (1,2)(3,4), (6,7,9)\rangle$ | 
| Derived length: | $1$ | 
The subgroup is nonabelian, an A-group, and nonsolvable.
Ambient group ($G$) information
| Description: | $S_4\times A_5$ | 
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_4\times S_5$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) | 
| $\operatorname{Aut}(H)$ | $C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) | 
| $\operatorname{res}(S)$ | $C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) | 
| $W$ | $C_2\times A_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $4$ | 
| Möbius function | $1$ | 
| Projective image | $S_4\times A_5$ | 
