Properties

Label 1440.5848.2.a1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4\times A_5$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Index: \(2\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(6,9,8), (6,9)(7,8), (1,3,5)(6,7,9), (1,2)(3,4)(6,8)(7,9), (6,8)(7,9)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the commutator subgroup (hence characteristic and normal), maximal, a semidirect factor, nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $S_4\times A_5$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_4\times S_5$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_4\times S_5$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_4\times A_5$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_4\times A_5$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$S_4\times A_5$
Maximal under-subgroups:$C_2^2\times A_5$$\GL(2,4)$$A_4^2$$D_5\times A_4$$S_3\times A_4$

Other information

Möbius function$-1$
Projective image$S_4\times A_5$