Properties

Label 1440.5224.5.a1.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:S_3^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(5\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{2}, d^{30}, b, d^{40}, c^{3}, d^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_{20}:S_3^2$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\times D_5).C_2^6$
$\operatorname{Aut}(H)$ $C_6^2:D_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{res}(S)$$D_4\times D_6^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4:S_3^2$
Normal closure:$D_{20}:S_3^2$
Core:$C_{12}.D_6$
Minimal over-subgroups:$D_{20}:S_3^2$
Maximal under-subgroups:$C_{12}.D_6$$D_6:D_6$$D_6:D_6$$D_6.D_6$$D_6.D_6$$C_{12}.D_6$$C_4\times S_3^2$$D_6.D_6$$D_6.D_6$$C_2^2.S_3^2$$C_2^2.S_3^2$$C_{12}:D_6$$C_{12}.D_6$$C_{12}.D_6$$C_{12}.D_6$$D_4:D_6$$D_4:D_6$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$D_{10}\times S_3^2$