Subgroup ($H$) information
| Description: | $D_4:S_3^2$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Index: | \(5\) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a, c^{2}, d^{30}, b, d^{40}, c^{3}, d^{15}$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $D_{20}:S_3^2$ |
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times S_3\times D_5).C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_6^2:D_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $D_4\times D_6^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $5$ |
| Möbius function | $-1$ |
| Projective image | $D_{10}\times S_3^2$ |