Properties

Label 1440.5223.30.f1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:C_2$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{3}, c^{2}, b, d^{45}, d^{30}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{20}:S_3^2$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2.C_2^4\times F_5$
$\operatorname{Aut}(H)$ $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_4:D_6$
Normal closure:$C_{12}.D_{30}$
Core:$C_4\times S_3$
Minimal over-subgroups:$D_{60}:C_2$$C_{12}.D_6$$D_4:D_6$
Maximal under-subgroups:$C_4\times S_3$$D_{12}$$C_4\times S_3$$D_{12}$$C_3\times Q_8$$D_4:C_2$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$D_{10}\times S_3^2$