Properties

Label 1440.5223.10.d1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{3}, d^{40}, c^{2}, b, d^{15}, d^{30}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_{20}:S_3^2$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2.C_2^4\times F_5$
$\operatorname{Aut}(H)$ $C_4:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_4:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4:S_3^2$
Normal closure:$C_{12}.D_{30}$
Core:$S_3\times C_{12}$
Minimal over-subgroups:$C_{12}.D_{30}$$D_4:S_3^2$
Maximal under-subgroups:$S_3\times C_{12}$$C_3:D_{12}$$C_6.D_6$$C_3:D_{12}$$C_3^2:Q_8$$D_{12}:C_2$$D_{12}:C_2$

Other information

Number of subgroups in this autjugacy class$10$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$D_{10}\times S_3^2$