Subgroup ($H$) information
| Description: | $C_5:C_4$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$b^{6}c^{27}, c^{12}, c^{30}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{30}.(C_4\times D_6)$ |
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_6.D_6$ |
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times S_3\times D_5).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $W$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Related subgroups
| Centralizer: | $C_3\times C_{12}$ | |||||
| Normalizer: | $C_{30}.(C_4\times D_6)$ | |||||
| Minimal over-subgroups: | $C_5:C_{12}$ | $C_5:C_{12}$ | $C_5:C_{12}$ | $C_4\times D_5$ | $C_5:Q_8$ | $C_5:Q_8$ |
| Maximal under-subgroups: | $C_{10}$ | $C_4$ |
Other information
| Möbius function | $0$ |
| Projective image | $D_{10}.S_3^2$ |