Properties

Label 1440.4896.3.b1.a1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,3):D_5$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(3\)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $a, d^{15}, b^{2}d^{10}, d^{4}, b^{3}, d^{10}, c^{3}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable.

Ambient group ($G$) information

Description: $(C_3\times \SL(2,3)):D_{10}$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{15}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_5\times S_4$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\GL(2,3):D_5$
Normal closure:$(C_3\times \SL(2,3)):D_{10}$
Core:$\SL(2,3):D_5$
Minimal over-subgroups:$(C_3\times \SL(2,3)):D_{10}$
Maximal under-subgroups:$\SL(2,3):D_5$$C_5\times \GL(2,3)$$C_5:\GL(2,3)$$C_8:D_{10}$$C_5:D_{12}$$\GL(2,3):C_2$
Autjugate subgroups:1440.4896.3.b1.b11440.4896.3.b1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$D_5\times C_3:S_4$