Subgroup ($H$) information
| Description: | $\GL(2,3):D_5$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Index: | \(3\) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Generators: |
$a, d^{15}, b^{2}d^{10}, d^{4}, b^{3}, d^{10}, c^{3}$
|
| Derived length: | $4$ |
The subgroup is maximal, nonabelian, and solvable.
Ambient group ($G$) information
| Description: | $(C_3\times \SL(2,3)):D_{10}$ |
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{15}\times A_4).C_6.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $D_5\times S_4$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $-1$ |
| Projective image | $D_5\times C_3:S_4$ |