Properties

Label 1440.2534.80.a1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{4}, b^{10}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{60}.S_4$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{60}$
Normalizer:$C_{12}.D_{15}$
Normal closure:$C_6\times A_4$
Core:$C_6$
Minimal over-subgroups:$C_3\times C_{30}$$C_6\times A_4$$C_3\times C_{12}$
Maximal under-subgroups:$C_3^2$$C_6$$C_6$$C_6$$C_6$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_{30}.S_4$