Properties

Label 1440.2534.4.b1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_{15}$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $a, b^{3}, a^{4}, b^{10}, a^{2}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{60}.S_4$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $C_2^2\times \AGL(2,3)\times F_5$
$\card{\operatorname{res}(S)}$\(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3:D_{15}$, of order \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{12}.D_{15}$
Normal closure:$C_{60}.S_4$
Core:$C_{60}$
Minimal over-subgroups:$C_{60}.S_4$
Maximal under-subgroups:$C_3\times C_{60}$$C_{15}:C_8$$C_{15}:C_8$$C_{15}:C_8$$C_{15}:C_8$$C_3^2:C_8$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$C_{15}:S_4$