Subgroup ($H$) information
Description: | $C_2^2\times C_{60}$ |
Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Generators: |
$a^{2}, a^{4}, d^{3}, d^{2}, c, b^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), abelian (hence metabelian and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
Description: | $C_{60}.S_4$ |
Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $S_3$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times F_5\times C_3:S_3:S_4$ |
$\operatorname{Aut}(H)$ | $C_4\times C_2^4:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Möbius function | $3$ |
Projective image | $C_{15}:S_4$ |