Properties

Label 1440.2534.36.a1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{4}, d^{3}, b^{3}, c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_{60}.S_4$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3^2:C_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{60}$
Normalizer:$C_{60}.S_4$
Minimal over-subgroups:$C_2^2\times C_{30}$$C_{10}\times A_4$$C_{10}\times A_4$$C_{10}\times A_4$$C_2^2\times C_{20}$
Maximal under-subgroups:$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2^3$

Other information

Möbius function$0$
Projective image$C_{30}.S_4$