Properties

Label 1440.2534.24.f1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{60}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a^{2}, b^{3}, a^{4}, b^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{60}.S_4$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_5\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{60}$
Normalizer:$C_{12}.D_{15}$
Normal closure:$A_4\times C_{20}$
Core:$C_{20}$
Minimal over-subgroups:$A_4\times C_{20}$$C_3\times C_{60}$$C_{15}:C_8$
Maximal under-subgroups:$C_{30}$$C_{20}$$C_{12}$
Autjugate subgroups:1440.2534.24.f1.b11440.2534.24.f1.c1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-3$
Projective image$C_{15}:S_4$