Properties

Label 1434890700.g.531441._.A
Order $ 2^{2} \cdot 3^{3} \cdot 5^{2} $
Index $ 3^{12} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Index: \(531441\)\(\medspace = 3^{12} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,2,3)(7,18,8,16,9,17)(10,38,12,37,11,39)(13,40)(14,41)(15,42)(19,30,21,29,20,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^{12}.C_{15}^2.D_6$
Order: \(1434890700\)\(\medspace = 2^{2} \cdot 3^{15} \cdot 5^{2} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(45916502400\)\(\medspace = 2^{7} \cdot 3^{15} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_{15}^2.C_{12}.C_2^3$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_{15}^2:D_6$
Normal closure:$C_3^{12}.C_{15}^2.D_6$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$531441$
Möbius function not computed
Projective image not computed