Properties

Label 1408.902.64.a1.a1
Order $ 2 \cdot 11 $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 352 & 0 \\ 0 & 352 \end{array}\right), \left(\begin{array}{rr} 136 & 0 \\ 0 & 136 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $D_8.C_{88}$
Order: \(1408\)\(\medspace = 2^{7} \cdot 11 \)
Exponent: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_8\times D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
Outer Automorphisms: $D_4\times C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:((C_2\times C_4).C_2^6)$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_8.C_{88}$
Normalizer:$D_8.C_{88}$
Minimal over-subgroups:$C_2\times C_{22}$$C_{44}$$C_{44}$$C_2\times C_{22}$$C_2\times C_{22}$$C_{44}$$C_{44}$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Möbius function$0$
Projective image$C_8\times D_4$