Properties

Label 1408.902.32.d1.a1
Order $ 2^{2} \cdot 11 $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 352 & 0 \\ 0 & 352 \end{array}\right), \left(\begin{array}{rr} 0 & 272 \\ 225 & 0 \end{array}\right), \left(\begin{array}{rr} 136 & 0 \\ 0 & 136 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_8.C_{88}$
Order: \(1408\)\(\medspace = 2^{7} \cdot 11 \)
Exponent: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:((C_2\times C_4).C_2^6)$
$\operatorname{Aut}(H)$ $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{176}$
Normalizer:$\OD_{32}:C_{22}$
Normal closure:$D_4\times C_{11}$
Core:$C_{22}$
Minimal over-subgroups:$D_4\times C_{11}$$D_4\times C_{11}$$C_2\times C_{44}$
Maximal under-subgroups:$C_{22}$$C_{22}$$C_2^2$
Autjugate subgroups:1408.902.32.d1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_8\times D_4$