Properties

Label 1404.156.468.a1.a1
Order $ 3 $
Index $ 2^{2} \cdot 3^{2} \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(468\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 13 \)
Exponent: \(3\)
Generators: $c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^2:D_{78}$
Order: \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3:D_{78}$
Order: \(468\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Automorphism Group: $\PSU(3,2).C_{39}.C_6.C_2^3$
Outer Automorphisms: $C_2\times \GL(2,3):C_6$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_{39}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^2:D_{78}$
Normalizer:$C_3^2:D_{78}$
Minimal over-subgroups:$C_{39}$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-702$
Projective image$C_3:D_{78}$