Properties

Label 1404.156.156.a1.d1
Order $ 3^{2} $
Index $ 2^{2} \cdot 3 \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Exponent: \(3\)
Generators: $b, c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^2:D_{78}$
Order: \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $D_{78}$
Order: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Automorphism Group: $D_6\times F_{13}$, of order \(1872\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13 \)
Outer Automorphisms: $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_{39}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2808\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 13 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_{78}$
Normalizer:$C_3^2:D_{78}$
Complements:$D_{78}$ $D_{78}$ $D_{78}$
Minimal over-subgroups:$C_3\times C_{39}$$\He_3$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$
Maximal under-subgroups:$C_3$$C_3$
Autjugate subgroups:1404.156.156.a1.a11404.156.156.a1.b11404.156.156.a1.c1

Other information

Möbius function$78$
Projective image$C_3:D_{78}$