Subgroup ($H$) information
Description: | $C_3^2\times D_{13}$ |
Order: | \(234\)\(\medspace = 2 \cdot 3^{2} \cdot 13 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) |
Generators: |
$b^{3}, d^{13}, d^{3}, c$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $\He_3:D_{26}$ |
Order: | \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \) |
Exponent: | \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
Description: | $S_3$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \) |
$\operatorname{Aut}(H)$ | $F_{13}\times \GL(2,3)$, of order \(7488\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 13 \) |
$\operatorname{res}(S)$ | $D_6\times F_{13}$, of order \(1872\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
$W$ | $S_3\times D_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Related subgroups
Other information
Möbius function | $3$ |
Projective image | $C_{39}:D_6$ |