Properties

Label 1404.117.6.a1.a1
Order $ 2 \cdot 3^{2} \cdot 13 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times D_{13}$
Order: \(234\)\(\medspace = 2 \cdot 3^{2} \cdot 13 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Generators: $b^{3}, d^{13}, d^{3}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $\He_3:D_{26}$
Order: \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$\operatorname{Aut}(H)$ $F_{13}\times \GL(2,3)$, of order \(7488\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 13 \)
$\operatorname{res}(S)$$D_6\times F_{13}$, of order \(1872\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$S_3\times D_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$\He_3:D_{26}$
Complements:$S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$D_{13}\times \He_3$$C_{39}:D_6$
Maximal under-subgroups:$C_3\times C_{39}$$C_3\times D_{13}$$C_3\times D_{13}$$C_3\times C_6$
Autjugate subgroups:1404.117.6.a1.b11404.117.6.a1.c11404.117.6.a1.d1

Other information

Möbius function$3$
Projective image$C_{39}:D_6$