Properties

Label 1404.117.2.b1.a1
Order $ 2 \cdot 3^{3} \cdot 13 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{13}\times \He_3$
Order: \(702\)\(\medspace = 2 \cdot 3^{3} \cdot 13 \)
Index: \(2\)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Generators: $b^{3}, d^{13}, c, b^{2}, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $\He_3:D_{26}$
Order: \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$\operatorname{Aut}(H)$ $F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_{39}:D_6$, of order \(468\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 13 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$\He_3:D_{26}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$\He_3:D_{26}$
Maximal under-subgroups:$C_{13}\times \He_3$$C_3^2\times D_{13}$$C_3^2\times D_{13}$$C_3^2\times D_{13}$$C_3^2\times D_{13}$$C_2\times \He_3$

Other information

Möbius function$-1$
Projective image$C_{39}:D_6$