Subgroup ($H$) information
Description: | $C_2\times C_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Index: | \(117\)\(\medspace = 3^{2} \cdot 13 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$a, b^{3}, c$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $\He_3:D_{26}$ |
Order: | \(1404\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 13 \) |
Exponent: | \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{13}\times C_3^2:\GL(2,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \) |
$\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $117$ |
Möbius function | $-3$ |
Projective image | $C_{39}:D_6$ |