Subgroup ($H$) information
Description: | $C_6^4:D_6$ |
Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
Index: | \(9\)\(\medspace = 3^{2} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\langle(10,13,12)(11,16,14), (1,6)(2,4)(3,7)(5,8)(10,12,13)(11,14,16), (18,19,21) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6^4.C_3:S_3^2$ |
Order: | \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^4.C_3^5.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_6^4.C_6^2.C_2^2$ |
$W$ | $C_{11}:D_{11}^2$, of order \(5324\)\(\medspace = 2^{2} \cdot 11^{3} \) |
Related subgroups
Centralizer: | not computed |
Normalizer: | $C_6^4:D_6$ |
Normal closure: | $C_6^4.C_3:S_3^2$ |
Core: | $C_6^4$ |
Other information
Number of subgroups in this autjugacy class | $9$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_6^4.C_3:S_3^2$ |