Properties

Label 139968.df.1296.J
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{4} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6^2$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $e^{3}, f^{2}g^{2}, f^{3}, b^{2}c^{4}e^{2}f^{2}, c^{2}e^{4}f^{2}g$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_6^4.(C_3\times S_3^2)$
Order: \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3\wr S_3\times D_4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $(C_6\times \He_3).C_2^5$
Outer Automorphisms: $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_6^2).C_3^5.C_2^6$
$\operatorname{Aut}(H)$ $S_3\times \GL(3,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3^2\times C_6^4$
Normalizer:$C_6^4.(C_3\times S_3^2)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.(C_3\times S_3^2)$