Properties

Label 1392.160.6.b1.a1
Order $ 2^{3} \cdot 29 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{58}$
Order: \(232\)\(\medspace = 2^{3} \cdot 29 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(58\)\(\medspace = 2 \cdot 29 \)
Generators: $a, b^{2}, c^{6}, c^{87}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $D_6\times C_{116}$
Order: \(1392\)\(\medspace = 2^{4} \cdot 3 \cdot 29 \)
Exponent: \(348\)\(\medspace = 2^{2} \cdot 3 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}:(C_2^4.C_2^4)$
$\operatorname{Aut}(H)$ $C_{28}\times \PSL(2,7)$, of order \(4704\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{2} \)
$\operatorname{res}(S)$$D_4\times C_{28}$, of order \(224\)\(\medspace = 2^{5} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{116}$
Normalizer:$C_2^2\times C_{116}$
Normal closure:$D_6\times C_{58}$
Core:$C_2\times C_{58}$
Minimal over-subgroups:$D_6\times C_{58}$$C_2^2\times C_{116}$
Maximal under-subgroups:$C_2\times C_{58}$$C_2\times C_{58}$$C_2\times C_{58}$$C_2\times C_{58}$$C_2\times C_{58}$$C_2\times C_{58}$$C_2\times C_{58}$$C_2^3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$D_6$