Properties

Label 1392.160.2.a1.a1
Order $ 2^{3} \cdot 3 \cdot 29 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6\times C_{58}$
Order: \(696\)\(\medspace = 2^{3} \cdot 3 \cdot 29 \)
Index: \(2\)
Exponent: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Generators: $c^{6}, c^{116}, c^{87}, b^{2}, a$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_6\times C_{116}$
Order: \(1392\)\(\medspace = 2^{4} \cdot 3 \cdot 29 \)
Exponent: \(348\)\(\medspace = 2^{2} \cdot 3 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}:(C_2^4.C_2^4)$
$\operatorname{Aut}(H)$ $(C_{42}\times A_4).C_2^3$
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times D_4\times C_{28}$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{116}$
Normalizer:$D_6\times C_{116}$
Minimal over-subgroups:$D_6\times C_{116}$
Maximal under-subgroups:$C_2\times C_{174}$$S_3\times C_{58}$$S_3\times C_{58}$$S_3\times C_{58}$$S_3\times C_{58}$$S_3\times C_{58}$$S_3\times C_{58}$$C_2^2\times C_{58}$$C_2\times D_6$

Other information

Möbius function$-1$
Projective image$D_6$