Subgroup ($H$) information
Description: | $D_6\times C_{58}$ |
Order: | \(696\)\(\medspace = 2^{3} \cdot 3 \cdot 29 \) |
Index: | \(2\) |
Exponent: | \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \) |
Generators: |
$c^{6}, c^{116}, c^{87}, b^{2}, a$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $D_6\times C_{116}$ |
Order: | \(1392\)\(\medspace = 2^{4} \cdot 3 \cdot 29 \) |
Exponent: | \(348\)\(\medspace = 2^{2} \cdot 3 \cdot 29 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{21}:(C_2^4.C_2^4)$ |
$\operatorname{Aut}(H)$ | $(C_{42}\times A_4).C_2^3$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\times D_4\times C_{28}$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $D_6$ |